Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.084
Filtrar
2.
J Physiol ; 602(8): 1815-1833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381008

RESUMO

Renin is the key enzyme of the systemic renin-angiotensin-aldosterone system, which plays an essential role in regulating blood pressure and maintaining electrolyte and extracellular volume homeostasis. Renin is mainly produced and secreted by specialized juxtaglomerular (JG) cells in the kidney. In the present study, we report for the first time that the conserved transmembrane receptor neuropilin-1 (NRP1) participates in the development of JG cells and plays a key role in renin production. We used the myelin protein zero-Cre (P0-Cre) to abrogate Nrp1 constitutively in P0-Cre lineage-labelled cells of the kidney. We found that the P0-Cre precursor cells differentiate into renin-producing JG cells. We employed a lineage-tracing strategy combined with RNAscope quantification and metabolic studies to reveal a cell-autonomous role for NRP1 in JG cell function. Nrp1-deficient animals displayed abnormal levels of tissue renin expression and failed to adapt properly to a homeostatic challenge to sodium balance. These findings provide new insights into cell fate decisions and cellular plasticity operating in P0-Cre-expressing precursors and identify NRP1 as a novel key regulator of JG cell maturation. KEY POINTS: Renin is a centrepiece of the renin-angiotensin-aldosterone system and is produced by specialized juxtaglomerular cells (JG) of the kidney. Neuropilin-1 (NRP1) is a conserved membrane-bound receptor that regulates vascular and neuronal development, cancer aggressiveness and fibrosis progression. We used conditional mutagenesis and lineage tracing to show that NRP1 is expressed in JG cells where it regulates their function. Cell-specific Nrp1 knockout mice present with renin paucity in JG cells and struggle to adapt to a homeostatic challenge to sodium balance. The results support the versatility of renin-producing cells in the kidney and may open new avenues for therapeutic approaches.


Assuntos
Sistema Justaglomerular , Renina , Camundongos , Animais , Renina/metabolismo , Sistema Justaglomerular/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Rim/metabolismo , Camundongos Knockout , Sódio/metabolismo
4.
Nat Commun ; 14(1): 5826, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749094

RESUMO

Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.


Assuntos
Neoplasias Renais , Renina , Humanos , Renina/metabolismo , Neoplasias Renais/metabolismo , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/patologia , Glomérulos Renais/patologia , Transdução de Sinais/genética , Receptor Notch1/genética
5.
Arch. argent. pediatr ; 121(4): e202202835, ago. 2023. ilus
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1443060

RESUMO

La hipertensión arterial (HTA) grave en pediatría responde fundamentalmente a causas secundarias. Presentamos una paciente adolescente de 14 años con HTA grave, alcalosis metabólica e hipopotasemia, secundaria a un tumor de células yuxtaglomerulares productor de renina, diagnosticado luego de dos años de evolución de HTA.


Severe arterial hypertension (HTN) in pediatrics is mainly due to secondary causes. Here we describe the case of a 14-year-old female adolescent with severe HTN, metabolic alkalosis, and hypokalemia, secondary to a renin-secreting juxtaglomerular cell tumor diagnosed after 2 years of HTN progression.


Assuntos
Humanos , Feminino , Adolescente , Hipertensão/etiologia , Hipopotassemia/complicações , Neoplasias Renais/complicações , Neoplasias Renais/diagnóstico , Renina/metabolismo , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/patologia
6.
Arch Argent Pediatr ; 121(4): e202202835, 2023 08 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36729016

RESUMO

Severe arterial hypertension (HTN) in pediatrics is mainly due to secondary causes. Here we describe the case of a 14-year-old female adolescent with severe HTN, metabolic alkalosis, and hypokalemia, secondary to a renin-secreting juxtaglomerular cell tumor diagnosed after 2 years of HTN progression.


La hipertensión arterial (HTA) grave en pediatría responde fundamentalmente a causas secundarias. Presentamos una paciente adolescente de 14 años con HTA grave, alcalosis metabólica e hipopotasemia, secundaria a un tumor de células yuxtaglomerulares productor de renina, diagnosticado luego de dos años de evolución de HTA.


Assuntos
Hipertensão , Hipopotassemia , Neoplasias Renais , Feminino , Humanos , Adolescente , Criança , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/patologia , Hipertensão/etiologia , Renina/metabolismo , Hipopotassemia/complicações , Neoplasias Renais/complicações , Neoplasias Renais/diagnóstico
7.
J Anat ; 242(6): 1184-1188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36719664

RESUMO

The macula densa (MD) is an anatomical structure having a plaque shape, placed in the distal end of thick ascending limb of each nephron and belonging to juxtaglomerular apparatus (JGA). The aim of the present investigation is to investigate the presence of ZO-1, a specific marker of tight juncions (TJs), in MD cells. Six samples of normal human renal tissue were embedded in paraffin for ZO-1 expression analysis by immunohistochemical and immunofluorescence techniques. We detected ZO-1 expression in the apical part of cell membrane in MD cells by immunohistochemistry. In addition, ZO-1 and nNOS expressions (a specific marker of MD) were colocalized in MD cells providing clear evidence of TJs presence in normal human MD. Since ZO-1 is responsible for diffusion barrier formation, its presence in the MD supports the existence of a tubulomesangial barrier that ensures a regulated exchange between MD and JGA effectors in renal and glomerular haemodynamic homeostasis.


Assuntos
Sistema Justaglomerular , Túbulos Renais , Humanos , Túbulos Renais/metabolismo , Glomérulos Renais/metabolismo , Néfrons , Imunofluorescência
8.
Hum Pathol ; 128: 110-123, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926808

RESUMO

Juxtaglomerular cell tumors and glomus tumors both arise from perivascular mesenchymal cells. Juxtaglomerular cells are specialized renin-secreting myoendocrine cells in the afferent arterioles adjacent to glomeruli, and juxtaglomerular tumors derived from these cells are therefore unique to the kidney. In contrast, glomus tumors have been described at numerous anatomic sites and may show significant morphologic and immunophenotypic overlap with juxtaglomerular tumors when occurring in the kidney. Although ultrastructural studies and immunohistochemistry for renin may distinguish these entities, these diagnostic modalities are often unavailable in routine clinical practice. Herein, we studied the clinicopathologic features of a large series of juxtaglomerular tumors (n = 15) and glomus tumors of the kidney (n = 9) to identify features helpful in their separation, including immunohistochemistry for smooth muscle actin (SMA), CD34, collagen IV, CD117, GATA3, synaptophysin, and renin. Markers such as SMA (juxtaglomerular tumors: 12/13, 92%; glomus tumors: 9/9, 100%), CD34 (juxtaglomerular tumors: 14/14, 100%; glomus tumors: 7/9, 78%), and collagen IV (juxtaglomerular tumors: 5/6, 83%; glomus tumors: 3/3, 100%) were not helpful in separating these entities. In contrast to prior reports, all juxtaglomerular tumors were CD117 negative (0/12, 0%), as were glomus tumors (0/5, 0%). Our results show that juxtaglomerular tumors have a younger age at presentation (median age: 27 years), female predilection, and frequently exhibit diffuse positivity for renin (10/10, 100%) and GATA3 (7/9, 78%), in contrast to glomus tumors (median age: 51 years; renin: 0/6, 0%; GATA3: 0/6, 0%). These findings may be helpful in distinguishing these tumors when they exhibit significant morphologic overlap.


Assuntos
Adenoma , Tumor Glômico , Neoplasias Renais , Actinas/análise , Adenoma/patologia , Adulto , Antígenos CD34/análise , Colágeno Tipo IV/análise , Feminino , Fator de Transcrição GATA3/análise , Tumor Glômico/química , Tumor Glômico/diagnóstico , Humanos , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/patologia , Sistema Justaglomerular/ultraestrutura , Rim/patologia , Neoplasias Renais/química , Pessoa de Meia-Idade , Renina/análise , Renina/metabolismo , Sinaptofisina/análise
9.
Pflugers Arch ; 474(8): 799-812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511367

RESUMO

The protease renin, the key enzyme of the renin-angiotensin-aldosterone system, is mainly produced and secreted by juxtaglomerular cells in the kidney, which are located in the walls of the afferent arterioles at their entrance into the glomeruli. When the body's demand for renin rises, the renin production capacity of the kidneys commonly increases by induction of renin expression in vascular smooth muscle cells and in extraglomerular mesangial cells. These cells undergo a reversible metaplastic cellular transformation in order to produce renin. Juxtaglomerular cells of the renin lineage have also been described to migrate into the glomerulus and differentiate into podocytes, epithelial cells or mesangial cells to restore damaged cells in states of glomerular disease. More recently, it could be shown that renin cells can also undergo an endocrine and metaplastic switch to erythropoietin-producing cells. This review aims to describe the high degree of plasticity of renin-producing cells of the kidneys and to analyze the underlying mechanisms.


Assuntos
Rim/metabolismo , Miócitos de Músculo Liso/metabolismo , Podócitos , Sistema Renina-Angiotensina/fisiologia , Renina/metabolismo , Diferenciação Celular , Sistema Justaglomerular/metabolismo , Glomérulos Renais/metabolismo , Células Mesangiais/metabolismo , Podócitos/metabolismo
11.
Sci Rep ; 12(1): 4197, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273307

RESUMO

The kidney plays a central role in body fluid homeostasis. Cells in the glomeruli and juxtaglomerular apparatus sense mechanical forces and modulate glomerular filtration and renin release. However, details of mechanosensory systems in these cells are unclear. Piezo2 is a recently identified mechanically activated ion channel found in various tissues, especially sensory neurons. Herein, we examined Piezo2 expression and regulation in mouse kidneys. RNAscope in situ hybridization revealed that Piezo2 expression was highly localized in mesangial cells and juxtaglomerular renin-producing cells. Immunofluorescence assays detected GFP signals in mesangial cells and juxtaglomerular renin-producing cells of Piezo2GFP reporter mice. Piezo2 transcripts were observed in the Foxd1-positive stromal progenitor cells of the metanephric mesenchyme in the developing mouse kidney, which are precursors of mesangial cells and renin-producing cells. In a mouse model of dehydration, Piezo2 expression was downregulated in mesangial cells and upregulated in juxtaglomerular renin-producing cells, along with the overproduction of renin and enlargement of the area of renin-producing cells. Furthermore, the expression of the renin coding gene Ren1 was reduced by Piezo2 knockdown in cultured juxtaglomerular As4.1 cells under static and stretched conditions. These data suggest pivotal roles for Piezo2 in the regulation of glomerular filtration and body fluid balance.


Assuntos
Canais Iônicos , Células Mesangiais , Renina , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Sistema Justaglomerular/metabolismo , Rim/metabolismo , Células Mesangiais/metabolismo , Camundongos , Renina/genética , Renina/metabolismo
12.
Nutrients ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215399

RESUMO

For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent arterioles. Juxtaglomerular cells can sense minute changes in the blood pressure and blood volume and accordingly synthesize, store, and secrete appropriate amounts of renin. Thus, when the blood pressure and blood volume are decreased JGA cells synthesize and secrete higher amounts of renin and when the blood pressure and blood volume is increased the synthesis and secretion of renin is decreased such that homeostasis is restored. To decipher this important function, JGA cells (renin cells) need to sense and transmit the extracellular physical forces to their chromatin to control renin gene expression for appropriate renin synthesis. The changes in perfusion pressure are sensed by Integrin ß1 that is transmitted to the renin cell's nucleus via lamin A/C that produces changes in the architecture of the chromatin. This results in an alteration (either increase or decrease) in renin gene expression. Cell membrane is situated in an unique location since all stimuli need to be transmitted to the cell nucleus and messages from the DNA to the cell external environment can be conveyed only through it. This implies that cell membrane structure and integrity is essential for all cellular functions. Cell membrane is composed to proteins and lipids. The lipid components of the cell membrane regulate its (cell membrane) fluidity and the way the messages are transmitted between the cell and its environment. Of all the lipids present in the membrane, arachidonic acid (AA) forms an important constituent. In response to pressure and other stimuli, cellular and nuclear shape changes occur that render nucleus to act as an elastic mechanotransducer that produces not only changes in cell shape but also in its dynamic behavior. Cell shape changes in response to external pressure(s) result(s) in the activation of cPLA2 (cytosolic phospholipase 2)-AA pathway that stretches to recruit myosin II which produces actin-myosin cytoskeleton contractility. Released AA can undergo peroxidation and peroxidized AA binds to DNA to regulate the expression of several genes. Alterations in the perfusion pressure in the afferent arterioles produces parallel changes in the renin cell membrane leading to changes in renin release. AA and its metabolic products regulate not only the release of renin but also changes in the vanilloid type 1 (TRPV1) expression in renal sensory nerves. Thus, AA and its metabolites function as intermediate/mediator molecules in transducing changes in perfusion and mechanical pressures that involves nuclear mechanotransduction mechanism. This mechanotransducer function of AA has relevance to the synthesis and release of insulin, neurotransmitters, and other soluble mediators release by specialized and non-specialized cells. Thus, AA plays a critical role in diseases such as diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, sepsis, lupus, rheumatoid arthritis, and cancer.


Assuntos
Sistema Justaglomerular , Renina , Ácido Araquidônico/metabolismo , Sistema Justaglomerular/irrigação sanguínea , Sistema Justaglomerular/metabolismo , Mecanotransdução Celular , Pressorreceptores , Renina/metabolismo
13.
Am J Physiol Renal Physiol ; 321(6): F689-F704, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693742

RESUMO

Macula densa (MD) cells, a chief sensory cell type in the nephron, are endowed with unique microanatomic features including a high density of protein synthetic organelles and secretory vesicles in basal cell processes ("maculapodia") that suggest a so far unknown high rate of MD protein synthesis. This study aimed to explore the rate and regulation of MD protein synthesis and their effects on glomerular function using novel transgenic mouse models, newly established fluorescence cell biology techniques, and intravital microscopy. Sox2-tdTomato kidney tissue sections and an O-propargyl puromycin incorporation-based fluorescence imaging assay showed that MD cells have the highest level of protein synthesis within the kidney cortex followed by intercalated cells and podocytes. Genetic gain of function of mammalian target of rapamycin (mTOR) signaling specifically in MD cells (in MD-mTORgof mice) or their physiological activation by low-salt diet resulted in further significant increases in the synthesis of MD proteins. Specifically, these included both classic and recently identified MD-specific proteins such as cyclooxygenase 2, microsomal prostaglandin E2 synthase 1, and pappalysin 2. Intravital imaging of the kidney using multiphoton microscopy showed significant increases in afferent and efferent arteriole and glomerular capillary diameters and blood flow in MD-mTORgof mice coupled with an elevated glomerular filtration rate. The presently identified high rate of MD protein synthesis that is regulated by mTOR signaling is a novel component of the physiological activation and glomerular hemodynamic regulatory functions of MD cells that remains to be fully characterized.NEW & NOTEWORTHY This study discovered the high rate of protein synthesis in macula densa (MD) cells by applying direct imaging techniques with single cell resolution. Physiological activation and mammalian target of rapamycin signaling played important regulatory roles in this process. This new feature is a novel component of the tubuloglomerular cross talk and glomerular hemodynamic regulatory functions of MD cells. Future work is needed to elucidate the nature and (patho)physiological role of the specific proteins synthesized by MD cells.


Assuntos
Sistema Justaglomerular/metabolismo , Biossíntese de Proteínas , Animais , Comunicação Autócrina , Dieta Hipossódica , Taxa de Filtração Glomerular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Intravital , Sistema Justaglomerular/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Comunicação Parácrina , Renina/metabolismo , Transdução de Sinais , Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
15.
Urology ; 156: e131-e133, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34058239

RESUMO

Hypertension is often the primary presenting symptom of multiple renal pathologies. Overactivity of the Renin-Angiotensin-Aldosterone-System (RAAS) is a common cause and usually results from an induced physiologic response. However, conditions do exist that involve autonomous renin production. Juxtaglomerular cell tumors (JGCT), or reninomas, are renal lesions that cause refractory hypertension via this mechanism. Symptoms and lab abnormalities usually subside with surgical resection of these tumors. Here, we present a case of a 13-year old female with uncontrolled hypertension secondary to reninoma treated with partial nephrectomy, with focus on initial presentation, diagnostic evaluation, and surgical management of this uncommon tumor.


Assuntos
Sistema Justaglomerular , Neoplasias Renais/diagnóstico , Adolescente , Feminino , Humanos , Hipertensão/etiologia , Neoplasias Renais/complicações , Neoplasias Renais/cirurgia , Nefrectomia/métodos
16.
Circ Res ; 128(7): 887-907, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793334

RESUMO

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.


Assuntos
Hipertensão/etiologia , Rim/citologia , Renina/fisiologia , Animais , Arteríolas/embriologia , Pressão Sanguínea/fisiologia , Comunicação Celular , Diferenciação Celular , Plasticidade Celular , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Conexinas/fisiologia , Homeostase , Humanos , Integrinas/fisiologia , Sistema Justaglomerular/citologia , Rim/irrigação sanguínea , Rim/embriologia , Glomérulos Renais/fisiologia , Camundongos , MicroRNAs/fisiologia , Fenótipo , Regeneração/fisiologia , Artéria Renal , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Células-Tronco/fisiologia , Equilíbrio Hidroeletrolítico
18.
Genes (Basel) ; 12(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546375

RESUMO

Spindle cell hemangioma is a benign vascular tumor typically occurring in the dermis or subcutis of distal extremities as red-brown lesions that can grow in both size and number over time. They can be very painful and potentially disabling. A family history of cancer or previous history may be relevant and must be taken into consideration. Juxtaglomerular cell tumor (reninoma) is an extremely rare cause of secondary hypertension diagnosed mostly among adolescents and young adults. Excessive renin secretion results in secondary hyperaldosteronism. Subsequent hypokalemia and metabolic alkalosis, together with high blood pressure, are clues for clinical diagnosis. Histological examination of the excised tumor leads to a definitive diagnosis. Reninoma is found in subcapsular localization, in most cases as a solitary mass, in imaging studies of kidneys. Exceptionally, it can be located in another part of a kidney. Both spindle cell hemangioma and reninoma are extremely rare tumors in children and adolescents. Herein, the authors present a case report of a patient with hereditary BRCA1 interacting protein C-terminal helicase 1 (BRIP1) mutation, spindle cell hemangioma, and secondary hypertension caused by atypically localized reninoma.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Predisposição Genética para Doença , Hemangioma/genética , RNA Helicases/genética , Mutação em Linhagem Germinativa/genética , Hemangioma/diagnóstico , Hemangioma/patologia , Humanos , Sistema Justaglomerular/patologia , Rim/metabolismo , Rim/patologia
19.
Am J Physiol Renal Physiol ; 320(3): F492-F504, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491562

RESUMO

Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.


Assuntos
Mesângio Glomerular/ultraestrutura , Sistema Justaglomerular/ultraestrutura , Glomérulos Renais/ultraestrutura , Túbulos Renais/ultraestrutura , Animais , Comunicação Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Mesângio Glomerular/citologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Camundongos , Coelhos , Ratos
20.
Am J Hypertens ; 34(1): 30-33, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32840289

RESUMO

BACKGROUND: Malignant hypertension is macrovascular and microvascular endothelial injury responsible for multiple organ damage. Considering the anatomical and functional homologies between the posterior pole of the eye and the kidney, ophthalmological explorations may inform clinicians on the mechanisms underpinning concurrent kidney injury in this condition. More specifically, we investigated whether the wall-to-lumen ratio (WLR) of retinal arterioles measured by adaptive optics ophthalmoscopy could be correlated to WLR of kidney arterioles as determined by pathology. We sought to estimate the incidence of retinal arteriole occlusion a supposedly uncommon complication of malignant hypertension. METHODS: All patients hospitalized in our renal Intensive Care Unit for malignant hypertension between 2016 and 2019 were referred to ophthalmological examinations. RESULTS: Twenty-seven patients were included. Median retinal WLR was 0.39 [0.31-0.47] and was correlated with initial systolic (r = 0.56, P = 0.003) and mean blood pressure (r = 0.46, P = 0.02) upon admission. The retinal WLR was not correlated to renal pathological findings, as assessed by juxtaglomerular WLR (r = 0.38, P = 0.2), ratio of glomerulosclerosis (r = -0.39, P = 0.2), or tubulointerstitial fibrosis (r = -0.45, P = 0.08). Retinal WLR was not associated with neurological or cardiovascular end-organ damage. Branch retinal artery occlusion was detected in 18.5% of patients and exudative retinal detachment (ERD) in 29.6% of patients, without any significant correlation with canonical signs of retinal hypertension including optic disc swelling. CONCLUSIONS: In the setting of malignant hypertension, we failed to demonstrate a significant relationship between WLR and other meaningful end-organ injuries. However, branch retinal artery occlusion and ERD may have been hitherto underestimated.


Assuntos
Arteríolas , Hipertensão Maligna , Sistema Justaglomerular/diagnóstico por imagem , Nefropatias , Oclusão da Artéria Retiniana , Descolamento Retiniano , Arteríolas/diagnóstico por imagem , Arteríolas/patologia , Determinação da Pressão Arterial/métodos , Determinação da Pressão Arterial/estatística & dados numéricos , Correlação de Dados , Feminino , França/epidemiologia , Humanos , Hipertensão Maligna/complicações , Hipertensão Maligna/diagnóstico , Hipertensão Maligna/epidemiologia , Hipertensão Maligna/fisiopatologia , Incidência , Nefropatias/diagnóstico , Nefropatias/epidemiologia , Nefropatias/etiologia , Masculino , Pessoa de Meia-Idade , Oftalmoscopia/métodos , Retina/diagnóstico por imagem , Oclusão da Artéria Retiniana/diagnóstico , Oclusão da Artéria Retiniana/epidemiologia , Oclusão da Artéria Retiniana/etiologia , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/epidemiologia , Descolamento Retiniano/etiologia , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...